Skip to content

渡一大师课

本文为观看渡一教育大师课后,整理的线上面试题笔记,以供日常复习使用。

一、原理 - 事件循环

单线程是异步产生的原因

事件循环是异步的实现方式

如何理解 JS 的异步?

image-20220810104344296

image-20220810104858857

JS 是一门单线程的语言,这是因为它运行在浏览器的渲染主线程中,而渲染主线程只有一个。

而渲染主线程承担着诸多的工作,渲染页面、执行 JS 都在其中运行。

如果使用同步的方式,就极有可能导致主线程产生阻塞,从而导致消息队列中的很多其他任务无法得到执行。

这样一来,一方面会导致繁忙的主线程白白的消耗时间,另一方面导致页面无法及时更新,给用户造成卡死现象。

所以浏览器采用异步的方式来避免。具体的做法是当某些任务发生时,比如计时器、网络、时间监听,主线程将任务交给其他线程去处理,自身立即结束任务的执行,转而执行后续代码。当其他线程完成时,将事先传递的回调函数包装成任务书,加入到消息队列的末尾排队,等待主线程调度执行。

在这种异步模式下,浏览器永不阻塞,从而最大限度的保证了单线程的流畅运行。

阐述一下 JS 的事件循环

事件循环又叫做消息循环,是浏览器渲染主线程的工作方式。

在 Chrome 的源码中,它开启一个不会结束的 for 循环,每次循环从消息队列中取出第一个任务执行,而其他线程只需要在合适的时候将任务加入到队列末尾即可。

过去把消息队列简单分为宏队列和微队列,这种说法目前已经无法满足复杂的浏览器环境,取而代之的是一种更加灵活多变的处理方式。

根据 W3C 官方的解释,每个任务有不同的类型,同类型的任务必须在同一个队列,不同的任务可以属于不同的队列。不同任务队列有不同的优先级,在一次事件循环中,由浏览器自行决定哪一个队列的任务。但浏览器必须有一个微队列,微队列的任务一定具有最高的优先级,必须优先调度执行。

JS 中的计时器能够做到精确计时吗?为什么?

不行,因为:

  1. 计算机硬件没有原子钟,无法做到精确计时;
  2. 操作系统的计时函数本身就有少量偏差,由于 JS 的计时器最终调用的是操作系统的函数,也就携带了这些偏差;
  3. 按照 W3C 的标准,浏览器实现计时器时,如果嵌套层级超过 5 层,则会带有 4 毫秒的最少事件,这样在计时时间少于 4 毫秒时又带来了偏差;
  4. 受事件循环的影响,计时器的回调函数只能在主线程空闲时运行,因此又带来了偏差。

二、原理 - 浏览器渲染原理

浏览器是如何渲染页面的?

当浏览器的网络线程收到 HTML 文档后,会产生一个渲染任务,并将其传递给渲染主线程的消息队列。

在事件循环机制的作用下,渲染主线程取出消息队列中的渲染任务,开启渲染流程。


渲染流程

整个渲染流程分为多个阶段,分别是: HTML 解析、样式计算、布局、分层、绘制、分块、光栅化、画

每个阶段都有明确的输入输出,上一个阶段的输出会成为下一个阶段的输入。

这样,整个渲染流程就形成了一套组织严密的生产流水线。


1. HTML 解析(Parse)

渲染的第一步是解析 HTML

解析过程中遇到 CSS 解析 CSS,遇到 JS 执行 JS。为了提高解析效率,浏览器在开始解析前,会启动一个预解析的线程,率先下载 HTML 中的外部 CSS 文件和 外部的 JS 文件。

如果主线程解析到link位置,此时外部的 CSS 文件还没有下载解析好,主线程不会等待,继续解析后续的 HTML。这是因为下载和解析 CSS 的工作是在预解析线程中进行的。这就是 CSS 不会阻塞 HTML 解析的根本原因。

如果主线程解析到script位置,会停止解析 HTML,转而等待 JS 文件下载好,并将全局代码解析执行完成后,才能继续解析 HTML。这是因为 JS 代码的执行过程可能会修改当前的 DOM 树,所以 DOM 树的生成必须暂停。这就是 JS 会阻塞 HTML 解析的根本原因。

第一步完成后,会得到 DOM 树和 CSSOM 树,浏览器的默认样式、内部样式、外部样式、行内样式均会包含在 CSSOM 树中。


2. 样式计算(Style)

渲染的下一步是样式计算

主线程会遍历得到的 DOM 树,依次为树中的每个节点计算出它最终的样式,称之为 Computed Style。

在这一过程中,很多预设值会变成绝对值,比如red会变成rgb(255,0,0);相对单位会变成绝对单位,比如em会变成px

这一步完成后,会得到一棵带有样式的 DOM 树。


3. 布局(Layout)

接下来是布局,布局完成后会得到布局树。

布局阶段会依次遍历 DOM 树的每一个节点,计算每个节点的几何信息。例如节点的宽高、相对包含块的位置。

大部分时候,DOM 树和布局树并非一一对应。

比如display:none的节点没有几何信息,因此不会生成到布局树;又比如使用了伪元素选择器,虽然 DOM 树中不存在这些伪元素节点,但它们拥有几何信息,所以会生成到布局树中。还有匿名行盒、匿名块盒等等都会导致 DOM 树和布局树无法一一对应。


4. 分层(Layer)

下一步是分层

主线程会使用一套复杂的策略对整个布局树中进行分层。

分层的好处在于,将来某一个层改变后,仅会对该层进行后续处理,从而提升效率。

滚动条、堆叠上下文、transform、opacity 等样式都会或多或少的影响分层结果,也可以通过will-change属性更大程度的影响分层结果。


5. 绘制(Paint)

再下一步是绘制

主线程会为每个层单独产生绘制指令集,用于描述这一层的内容该如何画出来。


6. 分块(Tiling)

再下一步是绘制

完成绘制后,主线程将每个图层的绘制信息提交给合成线程,剩余工作将由合成线程完成。

合成线程首先对每个图层进行分块,将其划分为更多的小区域。

它会从线程池中拿取多个线程来完成分块工作。


7. 光栅化(Raster)

分块完成后,进入光栅化阶段。

合成线程会将块信息交给 GPU 进程,以极高的速度完成光栅化。

GPU 进程会开启多个线程来完成光栅化,并且优先处理靠近视口区域的块。

光栅化的结果,就是一块一块的位图


8. 画(Draw)

最后一个阶段就是

合成线程拿到每个层、每个块的位图后,生成一个个「指引(quad)」信息。

指引会标识出每个位图应该画到屏幕的哪个位置,以及会考虑到旋转、缩放等变形。

变形发生在合成线程,与渲染主线程无关,这就是transform效率高的本质原因。

合成线程会把 quad 提交给 GPU 进程,由 GPU 进程产生系统调用,提交给 GPU 硬件,完成最终的屏幕成像。

什么是 Reflow?

reflow 的本质就是重新计算 layout 树。

当进行了会影响布局树的操作后,需要重新计算布局树,会引发 layout。

为了避免连续的多次操作导致布局树反复计算,浏览器会合并这些操作,当 JS 代码全部完成后再进行统一计算。所以,改动属性造成的 reflow 是异步完成的。

也同样因为如此,当 JS 获取布局属性时,就可能造成无法获取到最新的布局信息。

浏览器在反复权衡下,最终决定获取属性立即 reflow。

什么是 Repaint?

repaint 的本质就是重新根据分层信息计算了绘制指令。

当改动了可见样式后,就需要重新计算,会引发 repaint。

由于元素的布局信息也属于可见样式,所以 reflow 一定会引起 repaint。

为什么 Transform 的效率高?

因为 transform 既不会影响布局也不会影响绘制指令,它影响的只是渲染流程的最后一个「draw」阶段

由于 draw 阶段在合成线程中,所以 transform 的变化几乎不会影响渲染主线程。反之,渲染主线程无论如何忙碌,也不会影响 transform 的变化。

三、CSS

属性计算过程

总的来讲,属性值的计算过程,分为如下这么 4 个步骤:

  • 确定声明值:所谓声明值就是作者自己所书写的 CSS 样式;
  • 层叠冲突
    • 比较源的重要性:页面作者样式 > 用户样式 > 用户代理样式。
    • 比较优先级:选择器的权重。
    • 比较次序:定义先后。
  • 使用继承:始终最近的 div 元素样式;
  • 使用默认值

CSS 包含块

包含块(containing block):就是元素的尺寸和位置,会受它的包含块所影响。对于一些属性,例如 width, height, padding, margin,绝对定位元素的偏移值(比如 position 被设置为 absolute 或 fixed),当我们对其赋予百分比值时,这些值的计算值,就是通过元素的包含块计算得来

包含块分为两种,一种是根元素(HTML 元素)所在的包含块,被称之为初始包含块initial containing block)。对于浏览器而言,初始包含块的的大小等于视口 viewport 的大小,基点在画布的原点(视口左上角)。它是作为元素绝对定位和固定定位的参照物。

另外一种是对于非根元素,对于非根元素的包含块判定就有几种不同的情况了。大致可以分为如下几种:

  • 如果元素的 positiion 是 relative 或 static ,那么包含块由离它最近的块容器(block container)的内容区域(content area)的边缘建立。
  • 如果 position 属性是 fixed,那么包含块由视口建立。
  • 如果元素使用了 absolute 定位,则包含块由它的最近的 position 的值不是 static (也就是值为 fixed、absolute、relative 或 sticky)的祖先元素的内边距区的边缘组成。

前面两条实际上都还比较好理解,第三条往往是初学者容易比较忽视的,我们来看一个示例:

html
<body>
  <div class="container">
    <div class="item">
      <div class="item2"></div>
    </div>
  </div>
</body>
css
.container {
  width: 500px;
  height: 300px;
  background-color: skyblue;
  position: relative;
}
.item {
  width: 300px;
  height: 150px;
  border: 5px solid;
  margin-left: 100px;
}
.item2 {
  width: 100px;
  height: 100px;
  background-color: red;
  position: absolute;
  left: 10px;
  top: 10px;
}

首先阅读上面的代码,然后你能在脑海里面想出其大致的样子么?或者用笔和纸画一下也行。

公布正确答案:

image-20220814233548188

怎么样?有没有和你所想象的对上?

其实原因也非常简单,根据上面的第三条规则,对于 div.item2 来讲,它的包含块应该是 div.container,而非 div.item。

如果你能把上面非根元素的包含块判定规则掌握,那么关于包含块的知识你就已经掌握 80% 了。

实际上对于非根元素来讲,包含块还有一种可能,那就是如果 position 属性是 absolute 或 fixed,包含块也可能是由满足以下条件的最近父级元素的内边距区的边缘组成的:

  • transform 或 perspective 的值不是 none
  • will-change 的值是 transform 或 perspective
  • filter 的值不是 none 或 will-change 的值是 filter(只在 Firefox 下生效).
  • contain 的值是 paint (例如: contain: paint;)

我们还是来看一个示例:

html
<body>
  <div class="container">
    <div class="item">
      <div class="item2"></div>
    </div>
  </div>
</body>
css
.container {
  width: 500px;
  height: 300px;
  background-color: skyblue;
  position: relative;
}
.item {
  width: 300px;
  height: 150px;
  border: 5px solid;
  margin-left: 100px;
  transform: rotate(0deg); /* 新增代码 */
}
.item2 {
  width: 100px;
  height: 100px;
  background-color: red;
  position: absolute;
  left: 10px;
  top: 10px;
}

我们对于上面的代码只新增了一条声明,那就是 transform: rotate(0deg),此时的渲染效果却发生了改变,如下图所示:

image-20220814234347149

可以看到,此时对于 div.item2 来讲,包含块就变成了 div.item。

Released under the MIT License.